

Order No.: RMM-02-1463-1r

for analysis of Deoxynivalenol (DON) in Wheat

Deoxynivalenol (DON)

## Specification

| Lot No.       | 002146301201014275   |
|---------------|----------------------|
| Matrix Type   | Wheat                |
| Analyte       | Deoxynivalenol (DON) |
| Weight/Volume | 50 g                 |
| Storage       | -18 °C               |
| Retest        | 06/2024              |

|                | Concentration $x_{PT}$ [µg/kg] | data points<br>n | satisfactory range $x_{PT}~\pm 2~\sigma_{PT}~[\mu { m g/kg}]$ | uncertainty* $2  u(x_{PT}) [\mu \mathrm{g/kg}]$ |
|----------------|--------------------------------|------------------|---------------------------------------------------------------|-------------------------------------------------|
| Deoxynivalenol | < 290**                        | 6                | nd                                                            | nd                                              |

<sup>\*</sup>Expanded uncertainty with k=2 for approximately 95% level of confidence (PA/PH/OMCL(18)153R1 CORR Evaluation of Measurement Uncertainty - Annex 2.5).

<sup>\*\*</sup>Results have a high uncertainty, arithmetic mean shown; satisfactory range estimated by coefficient of variation of 37,21 % for Deoxynivalenol.



## Comments

**aokin** reference matrix material is naturally contaminated and homogenized. Concentration of the analyte is determinate in a proficiency round. Unweighted mean value of the means of accepted sets of data, each set being obtained in a different laboratory and/or with a different method of determination such as HHPLC-MS/MS, HPLC/DAD, HPLC/FLD, LC-MS/MS, HPLC/UV.

The certified value and its uncertainty are traceable to the International System of Units (SI) as chemical mass fraction as  $\mu g/kg$ . The assigned value, the satisfactory range and the expanded uncertainty are given. The minimum amount of sample to be used is 10 g.

## Calculation of the assigned value $x_{PT}$

The Assigned Value is the value attributed to a particular property of interlaboratory proficiency test (definition from ISO13528:2016).  $x_{PT}$  is derived from participants quantitative results obtained with confirmatory analysis. The procedure for determining is from the Algorithm A (ISO 13528:2016) or from the median.

The standard uncertainty is expanded by a factor f = 1,25 and is calculated as:  $u(x_{PT}) = f \frac{\sigma_{PT}}{\sqrt{n}}$  (uncertainty of the characterization) where:

- $\sigma_{PT}$  is the robust estimate of the participant standard deviation;
- $\sigma_{PT} = b \cdot x_{PT}$  where b is the relative robust estimate of the participant standard deviation
- n is the number of participants used in calculating the robust assigned values.

The satisfactory range is calculated from the expanded (k=2) standard deviation of the proficiency assessment: The satisfactory range equals  $x_{PT} \pm 2 \sigma_{PT}$ .